Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
2.
J Clin Epidemiol ; 157: 102-109, 2023 05.
Article in English | MEDLINE | ID: covidwho-2279643

ABSTRACT

OBJECTIVES: To investigate the completeness of reporting of behavioral, environmental, social and system interventions (BESSI) for reducing the transmission of SARS-CoV-2 evaluated in randomized trials, to obtain missing intervention details and to document the interventions assessed. STUDY DESIGN AND SETTING: We assessed completeness of reporting in randomized trials of BESSI using the Template for Intervention Description and Replication (TIDieR) checklist. Investigators were contacted to provide missing intervention details and if provided, intervention descriptions were reassessed and documented according to the TIDieR items. RESULTS: Forty-five trials (planned or complete) describing 21 educational interventions, 15 protective measures, and nine social distancing interventions were included. In 30 trials with a protocol or study report, 30% (9/30) of interventions were completely described; this increased to 53% (16/30) after contacting 24 trial investigators (11 responded). Across all interventions, intervention provider training (35%) was the most frequently incompletely described checklist item, followed by the 'when and how much' intervention item. CONCLUSION: Incomplete reporting of BESSI is a substantial problem with essential information necessary for implementation of interventions and for building on existing knowledge frequently missing and unable to be obtained. Such reporting is an avoidable source of research waste.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Checklist
3.
Cochrane Database Syst Rev ; 1: CD006207, 2023 01 30.
Article in English | MEDLINE | ID: covidwho-2219619

ABSTRACT

BACKGROUND: Viral epidemics or pandemics of acute respiratory infections (ARIs) pose a global threat. Examples are influenza (H1N1) caused by the H1N1pdm09 virus in 2009, severe acute respiratory syndrome (SARS) in 2003, and coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 in 2019. Antiviral drugs and vaccines may be insufficient to prevent their spread. This is an update of a Cochrane Review last published in 2020. We include results from studies from the current COVID-19 pandemic. OBJECTIVES: To assess the effectiveness of physical interventions to interrupt or reduce the spread of acute respiratory viruses. SEARCH METHODS: We searched CENTRAL, PubMed, Embase, CINAHL, and two trials registers in October 2022, with backwards and forwards citation analysis on the new studies. SELECTION CRITERIA: We included randomised controlled trials (RCTs) and cluster-RCTs investigating physical interventions (screening at entry ports, isolation, quarantine, physical distancing, personal protection, hand hygiene, face masks, glasses, and gargling) to prevent respiratory virus transmission.  DATA COLLECTION AND ANALYSIS: We used standard Cochrane methodological procedures. MAIN RESULTS: We included 11 new RCTs and cluster-RCTs (610,872 participants) in this update, bringing the total number of RCTs to 78. Six of the new trials were conducted during the COVID-19 pandemic; two from Mexico, and one each from Denmark, Bangladesh, England, and Norway. We identified four ongoing studies, of which one is completed, but unreported, evaluating masks concurrent with the COVID-19 pandemic. Many studies were conducted during non-epidemic influenza periods. Several were conducted during the 2009 H1N1 influenza pandemic, and others in epidemic influenza seasons up to 2016. Therefore, many studies were conducted in the context of lower respiratory viral circulation and transmission compared to COVID-19. The included studies were conducted in heterogeneous settings, ranging from suburban schools to hospital wards in high-income countries; crowded inner city settings in low-income countries; and an immigrant neighbourhood in a high-income country. Adherence with interventions was low in many studies. The risk of bias for the RCTs and cluster-RCTs was mostly high or unclear. Medical/surgical masks compared to no masks We included 12 trials (10 cluster-RCTs) comparing medical/surgical masks versus no masks to prevent the spread of viral respiratory illness (two trials with healthcare workers and 10 in the community). Wearing masks in the community probably makes little or no difference to the outcome of influenza-like illness (ILI)/COVID-19 like illness compared to not wearing masks (risk ratio (RR) 0.95, 95% confidence interval (CI) 0.84 to 1.09; 9 trials, 276,917 participants; moderate-certainty evidence. Wearing masks in the community probably makes little or no difference to the outcome of laboratory-confirmed influenza/SARS-CoV-2 compared to not wearing masks (RR 1.01, 95% CI 0.72 to 1.42; 6 trials, 13,919 participants; moderate-certainty evidence). Harms were rarely measured and poorly reported (very low-certainty evidence). N95/P2 respirators compared to medical/surgical masks We pooled trials comparing N95/P2 respirators with medical/surgical masks (four in healthcare settings and one in a household setting). We are very uncertain on the effects of N95/P2 respirators compared with medical/surgical masks on the outcome of clinical respiratory illness (RR 0.70, 95% CI 0.45 to 1.10; 3 trials, 7779 participants; very low-certainty evidence). N95/P2 respirators compared with medical/surgical masks may be effective for ILI (RR 0.82, 95% CI 0.66 to 1.03; 5 trials, 8407 participants; low-certainty evidence). Evidence is limited by imprecision and heterogeneity for these subjective outcomes. The use of a N95/P2 respirators compared to medical/surgical masks probably makes little or no difference for the objective and more precise outcome of laboratory-confirmed influenza infection (RR 1.10, 95% CI 0.90 to 1.34; 5 trials, 8407 participants; moderate-certainty evidence). Restricting pooling to healthcare workers made no difference to the overall findings. Harms were poorly measured and reported, but discomfort wearing medical/surgical masks or N95/P2 respirators was mentioned in several studies (very low-certainty evidence).  One previously reported ongoing RCT has now been published and observed that medical/surgical masks were non-inferior to N95 respirators in a large study of 1009 healthcare workers in four countries providing direct care to COVID-19 patients.  Hand hygiene compared to control Nineteen trials compared hand hygiene interventions with controls with sufficient data to include in meta-analyses. Settings included schools, childcare centres and homes. Comparing hand hygiene interventions with controls (i.e. no intervention), there was a 14% relative reduction in the number of people with ARIs in the hand hygiene group (RR 0.86, 95% CI 0.81 to 0.90; 9 trials, 52,105 participants; moderate-certainty evidence), suggesting a probable benefit. In absolute terms this benefit would result in a reduction from 380 events per 1000 people to 327 per 1000 people (95% CI 308 to 342). When considering the more strictly defined outcomes of ILI and laboratory-confirmed influenza, the estimates of effect for ILI (RR 0.94, 95% CI 0.81 to 1.09; 11 trials, 34,503 participants; low-certainty evidence), and laboratory-confirmed influenza (RR 0.91, 95% CI 0.63 to 1.30; 8 trials, 8332 participants; low-certainty evidence), suggest the intervention made little or no difference. We pooled 19 trials (71, 210 participants) for the composite outcome of ARI or ILI or influenza, with each study only contributing once and the most comprehensive outcome reported. Pooled data showed that hand hygiene may be beneficial with an 11% relative reduction of respiratory illness (RR 0.89, 95% CI 0.83 to 0.94; low-certainty evidence), but with high heterogeneity. In absolute terms this benefit would result in a reduction from 200 events per 1000 people to 178 per 1000 people (95% CI 166 to 188). Few trials measured and reported harms (very low-certainty evidence). We found no RCTs on gowns and gloves, face shields, or screening at entry ports. AUTHORS' CONCLUSIONS: The high risk of bias in the trials, variation in outcome measurement, and relatively low adherence with the interventions during the studies hampers drawing firm conclusions. There were additional RCTs during the pandemic related to physical interventions but a relative paucity given the importance of the question of masking and its relative effectiveness and the concomitant measures of mask adherence which would be highly relevant to the measurement of effectiveness, especially in the elderly and in young children. There is uncertainty about the effects of face masks. The low to moderate certainty of evidence means our confidence in the effect estimate is limited, and that the true effect may be different from the observed estimate of the effect. The pooled results of RCTs did not show a clear reduction in respiratory viral infection with the use of medical/surgical masks. There were no clear differences between the use of medical/surgical masks compared with N95/P2 respirators in healthcare workers when used in routine care to reduce respiratory viral infection. Hand hygiene is likely to modestly reduce the burden of respiratory illness, and although this effect was also present when ILI and laboratory-confirmed influenza were analysed separately, it was not found to be a significant difference for the latter two outcomes. Harms associated with physical interventions were under-investigated. There is a need for large, well-designed RCTs addressing the effectiveness of many of these interventions in multiple settings and populations, as well as the impact of adherence on effectiveness, especially in those most at risk of ARIs.


Subject(s)
Communicable Disease Control , Respiratory Tract Infections , Aged , Child, Preschool , Humans , COVID-19/prevention & control , COVID-19/epidemiology , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/prevention & control , SARS-CoV-2 , Randomized Controlled Trials as Topic , Influenza A Virus, H1N1 Subtype , Communicable Disease Control/methods , Global Health/statistics & numerical data
4.
BMC Med Res Methodol ; 22(1): 161, 2022 06 02.
Article in English | MEDLINE | ID: covidwho-1881195

ABSTRACT

BACKGROUND: Recent international health events have led to an increased proliferation of remotely delivered health interventions. Even with the pandemic seemingly coming under control, the experiences of the past year have fueled a growth in ideas and technology for increasing the scope of remote care delivery. Unfortunately, clinicians and health systems will have difficulty with the adoption and implementation of these interventions if ongoing and future clinical trials fail to report necessary details about execution, platforms, and infrastructure related to these interventions. The purpose was to develop guidance for reporting of telehealth interventions. METHODS: A working group from the US Pain Management Collaboratory developed guidance for complete reporting of telehealth interventions. The process went through 5-step process from conception to final checklist development with input for many stakeholders, to include all 11 primary investigators with trials in the Collaboratory. RESULTS: An extension focused on unique considerations relevant to telehealth interventions was developed for the Template for the Intervention Description and Replication (TIDieR) checklist. CONCLUSION: The Telehealth Intervention guideline encourages use of the Template for the Intervention Description and Replication (TIDieR) checklist as a valuable tool (TIDieR-Telehealth) to improve the quality of research through a reporting guide of relevant interventions that will help maximize reproducibility and implementation.


Subject(s)
Checklist , Telemedicine , Humans , Reproducibility of Results , Research Report
5.
Health Res Policy Syst ; 20(1): 31, 2022 Mar 19.
Article in English | MEDLINE | ID: covidwho-1744084

ABSTRACT

BACKGROUND: The COVID-19 pandemic has led to an increased interest in communication with the public regarding vaccination. Our recent Cochrane qualitative evidence synthesis points to several factors that could influence the implementation and success of healthcare worker communication with older adults about vaccination. However, it is often difficult to assess whether factors identified as potentially important in qualitative studies have been considered in randomized trials because of poor trial reporting. We therefore decided to use our qualitative evidence synthesis findings to encourage better reporting of vaccination communication interventions in trials by developing an elaboration of the TIDieR (Template for Intervention Description and Replication) checklist for intervention reporting. METHODS: We examined the findings from our Cochrane qualitative evidence synthesis on healthcare workers' perceptions of and experiences with communicating about vaccination with adults over the age of 50 years. We identified factors that could influence the implementation and uptake, and thereby the effectiveness, of vaccination communication interventions. We then drafted a list of the information elements we would need from trial reports to assess whether these factors had been considered in the development of the interventions evaluated in these trials. Finally, we compared our list of information elements to the TIDieR checklist items. We were able to align all of our information elements with the TIDieR items. However, for several of the TIDieR items, we developed a more detailed description to ensure that relevant information would be captured sufficiently in trial reports. RESULTS: We developed elaborations for the following TIDieR items: "Why" (item 2), "What-materials" (item 3), "Who provided" (item 5), "How" (item 6), "Where" (item 7) and "Tailoring" (item 9). CONCLUSIONS: Both qualitative research and trials of intervention effectiveness are critical to furthering our understanding of what works, where, for whom and through which mechanisms. However, a key ingredient for developing this understanding is adequate reporting of intervention design, content and implementation in randomized trials. We hope that this elaboration of the TIDier checklist will improve reporting of interventions in trials focused on vaccine communication with older adults, and thereby enhance the usability of this research for developing future communication strategies.


Subject(s)
COVID-19 , Checklist , Aged , COVID-19/prevention & control , Communication , Humans , Middle Aged , Pandemics , Qualitative Research , Vaccination
6.
BMJ Open ; 11(8): e046175, 2021 08 18.
Article in English | MEDLINE | ID: covidwho-1363534

ABSTRACT

OBJECTIVE: To compare the effectiveness of hand hygiene using alcohol-based hand sanitiser to soap and water for preventing the transmission of acute respiratory infections (ARIs) and to assess the relationship between the dose of hand hygiene and the number of ARI, influenza-like illness (ILI) or influenza events. DESIGN: Systematic review and meta-analysis. DATA SOURCES: Cochrane Central Register of Controlled Trials (CENTRAL), PubMed, Embase, Cumulative Index of Nursing and Allied Health Literature (CINAHL) and trial registries were searched in April 2020. INCLUSION CRITERIA: We included randomised controlled trials that compared a community-based hand hygiene intervention (soap and water, or sanitiser) with a control, or trials that compared sanitiser with soap and water, and measured outcomes of ARI, ILI or laboratory-confirmed influenza or related consequences. DATA EXTRACTION AND ANALYSIS: Two review authors independently screened the titles and abstracts for inclusion and extracted data. RESULTS: Eighteen trials were included. When meta-analysed, three trials of soap and water versus control found a non-significant increase in ARI events (risk ratio (RR) 1.23, 95% CI 0.78 to 1.93); six trials of sanitiser versus control found a significant reduction in ARI events (RR 0.80, 95% CI 0.71 to 0.89). When hand hygiene dose was plotted against ARI relative risk, no clear dose-response relationship was observable. Four trials were head-to-head comparisons of sanitiser and soap and water but too heterogeneous to pool: two found a significantly greater reduction in the sanitiser group compared with the soap group and two found no significant difference between the intervention arms. CONCLUSIONS: Adequately performed hand hygiene, with either soap or sanitiser, reduces the risk of ARI virus transmission; however, direct and indirect evidence suggest sanitiser might be more effective in practice.


Subject(s)
Hand Hygiene , Influenza, Human , Respiratory Tract Infections , Virus Diseases , Humans , Influenza, Human/prevention & control , Respiratory Tract Infections/prevention & control , Soaps
7.
BMC Med Ethics ; 22(1): 106, 2021 07 28.
Article in English | MEDLINE | ID: covidwho-1331940

ABSTRACT

Over recent years, the research community has been increasingly using preprint servers to share manuscripts that are not yet peer-reviewed. Even if it enables quick dissemination of research findings, this practice raises several challenges in publication ethics and integrity. In particular, preprints have become an important source of information for stakeholders interested in COVID19 research developments, including traditional media, social media, and policy makers. Despite caveats about their nature, many users can still confuse pre-prints with peer-reviewed manuscripts. If unconfirmed but already widely shared first-draft results later prove wrong or misinterpreted, it can be very difficult to "unlearn" what we thought was true. Complexity further increases if unconfirmed findings have been used to inform guidelines. To help achieve a balance between early access to research findings and its negative consequences, we formulated five recommendations: (a) consensus should be sought on a term clearer than 'pre-print', such as 'Unrefereed manuscript', "Manuscript awaiting peer review" or ''Non-reviewed manuscript"; (b) Caveats about unrefereed manuscripts should be prominent on their first page, and each page should include a red watermark stating 'Caution-Not Peer Reviewed'; (c) pre-print authors should certify that their manuscript will be submitted to a peer-review journal, and should regularly update the manuscript status; (d) high level consultations should be convened, to formulate clear principles and policies for the publication and dissemination of non-peer reviewed research results; (e) in the longer term, an international initiative to certify servers that comply with good practices could be envisaged.


Subject(s)
COVID-19 , Social Media , Humans , Peer Review, Research , SARS-CoV-2
8.
BMJ Open ; 11(2): e043421, 2021 02 23.
Article in English | MEDLINE | ID: covidwho-1099770

ABSTRACT

OBJECTIVE: Public cooperation to practise preventive health behaviours is essential to manage the transmission of infectious diseases such as COVID-19. We aimed to investigate beliefs about COVID-19 diagnosis, transmission and prevention that have the potential to impact the uptake of recommended public health strategies. DESIGN: An online cross-sectional survey. PARTICIPANTS: A national sample of 1500 Australian adults with representative quotas for age and gender provided by an online panel provider. MAIN OUTCOME MEASURE: Proportion of participants with correct/incorrect knowledge of COVID-19 preventive behaviours and reasons for misconceptions. RESULTS: Of the 1802 potential participants contacted, 289 did not qualify, 13 declined and 1500 participated in the survey (response rate 83%). Most participants correctly identified 'washing your hands regularly with soap and water' (92%) and 'staying at least 1.5 m away from others' (90%) could help prevent COVID-19. Over 40% (incorrectly) considered wearing gloves outside of the home would prevent them from contracting COVID-19. Views about face masks were divided. Only 66% of participants correctly identified that 'regular use of antibiotics' would not prevent COVID-19.Most participants (90%) identified 'fever, fatigue and cough' as indicators of COVID-19. However, 42% of participants thought that being unable to 'hold your breath for 10 s without coughing' was an indicator of having the virus. The most frequently reported sources of COVID-19 information were commercial television channels (56%), the Australian Broadcasting Corporation (43%) and the Australian Government COVID-19 information app (31%). CONCLUSIONS: Public messaging about hand hygiene and physical distancing to prevent transmission appears to have been effective. However, there are clear, identified barriers for many individuals that have the potential to impede uptake or maintenance of these behaviours in the long term. We need to develop public health messages that harness these barriers to improve future cooperation. Ensuring adherence to these interventions is critical.


Subject(s)
COVID-19 , Adolescent , Adult , Aged , Australia , COVID-19 Testing , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , SARS-CoV-2 , Young Adult
9.
Cochrane Database Syst Rev ; 11: CD006207, 2020 11 20.
Article in English | MEDLINE | ID: covidwho-934984

ABSTRACT

BACKGROUND: Viral epidemics or pandemics of acute respiratory infections (ARIs) pose a global threat. Examples are influenza (H1N1) caused by the H1N1pdm09 virus in 2009, severe acute respiratory syndrome (SARS) in 2003, and coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 in 2019. Antiviral drugs and vaccines may be insufficient to prevent their spread. This is an update of a Cochrane Review published in 2007, 2009, 2010, and 2011. The evidence summarised in this review does not include results from studies from the current COVID-19 pandemic. OBJECTIVES: To assess the effectiveness of physical interventions to interrupt or reduce the spread of acute respiratory viruses. SEARCH METHODS: We searched CENTRAL, PubMed, Embase, CINAHL on 1 April 2020. We searched ClinicalTrials.gov, and the WHO ICTRP on 16 March 2020. We conducted a backwards and forwards citation analysis on the newly included studies. SELECTION CRITERIA: We included randomised controlled trials (RCTs) and cluster-RCTs of trials investigating physical interventions (screening at entry ports, isolation, quarantine, physical distancing, personal protection, hand hygiene, face masks, and gargling) to prevent respiratory virus transmission. In previous versions of this review we also included observational studies. However, for this update, there were sufficient RCTs to address our study aims.   DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane. We used GRADE to assess the certainty of the evidence. Three pairs of review authors independently extracted data using a standard template applied in previous versions of this review, but which was revised to reflect our focus on RCTs and cluster-RCTs for this update. We did not contact trialists for missing data due to the urgency in completing the review. We extracted data on adverse events (harms) associated with the interventions. MAIN RESULTS: We included 44 new RCTs and cluster-RCTs in this update, bringing the total number of randomised trials to 67. There were no included studies conducted during the COVID-19 pandemic. Six ongoing studies were identified, of which three evaluating masks are being conducted concurrent with the COVID pandemic, and one is completed. Many studies were conducted during non-epidemic influenza periods, but several studies were conducted during the global H1N1 influenza pandemic in 2009, and others in epidemic influenza seasons up to 2016. Thus, studies were conducted in the context of lower respiratory viral circulation and transmission compared to COVID-19. The included studies were conducted in heterogeneous settings, ranging from suburban schools to hospital wards in high-income countries; crowded inner city settings in low-income countries; and an immigrant neighbourhood in a high-income country. Compliance with interventions was low in many studies. The risk of bias for the RCTs and cluster-RCTs was mostly high or unclear. Medical/surgical masks compared to no masks We included nine trials (of which eight were cluster-RCTs) comparing medical/surgical masks versus no masks to prevent the spread of viral respiratory illness (two trials with healthcare workers and seven in the community). There is low certainty evidence from nine trials (3507 participants) that wearing a mask may make little or no difference to the outcome of influenza-like illness (ILI) compared to not wearing a mask (risk ratio (RR) 0.99, 95% confidence interval (CI) 0.82 to 1.18. There is moderate certainty evidence that wearing a mask probably makes little or no difference to the outcome of laboratory-confirmed influenza compared to not wearing a mask (RR 0.91, 95% CI 0.66 to 1.26; 6 trials; 3005 participants). Harms were rarely measured and poorly reported. Two studies during COVID-19 plan to recruit a total of 72,000 people. One evaluates medical/surgical masks (N = 6000) (published Annals of Internal Medicine, 18 Nov 2020), and one evaluates cloth masks (N = 66,000). N95/P2 respirators compared to medical/surgical masks We pooled trials comparing N95/P2 respirators with medical/surgical masks (four in healthcare settings and one in a household setting). There is uncertainty over the effects of N95/P2 respirators when compared with medical/surgical masks on the outcomes of clinical respiratory illness (RR 0.70, 95% CI 0.45 to 1.10; very low-certainty evidence; 3 trials; 7779 participants) and ILI (RR 0.82, 95% CI 0.66 to 1.03; low-certainty evidence; 5 trials; 8407 participants). The evidence is limited by imprecision and heterogeneity for these subjective outcomes. The use of a N95/P2 respirator compared to a medical/surgical mask probably makes little or no difference for the objective and more precise outcome of laboratory-confirmed influenza infection (RR 1.10, 95% CI 0.90 to 1.34; moderate-certainty evidence; 5 trials; 8407 participants). Restricting the pooling to healthcare workers made no difference to the overall findings. Harms were poorly measured and reported, but discomfort wearing medical/surgical masks or N95/P2 respirators was mentioned in several studies. One ongoing study recruiting 576 people compares N95/P2 respirators with medical surgical masks for healthcare workers during COVID-19. Hand hygiene compared to control Settings included schools, childcare centres, homes, and offices. In a comparison of hand hygiene interventions with control (no intervention), there was a 16% relative reduction in the number of people with ARIs in the hand hygiene group (RR 0.84, 95% CI 0.82 to 0.86; 7 trials; 44,129 participants; moderate-certainty evidence), suggesting a probable benefit. When considering the more strictly defined outcomes of ILI and laboratory-confirmed influenza, the estimates of effect for ILI (RR 0.98, 95% CI 0.85 to 1.13; 10 trials; 32,641 participants; low-certainty evidence) and laboratory-confirmed influenza (RR 0.91, 95% CI 0.63 to 1.30; 8 trials; 8332 participants; low-certainty evidence) suggest the intervention made little or no difference. We pooled all 16 trials (61,372 participants) for the composite outcome of ARI or ILI or influenza, with each study only contributing once and the most comprehensive outcome reported. The pooled data showed that hand hygiene may offer a benefit with an 11% relative reduction of respiratory illness (RR 0.89, 95% CI 0.84 to 0.95; low-certainty evidence), but with high heterogeneity. Few trials measured and reported harms. There are two ongoing studies of handwashing interventions in 395 children outside of COVID-19. We identified one RCT on quarantine/physical distancing. Company employees in Japan were asked to stay at home if household members had ILI symptoms. Overall fewer people in the intervention group contracted influenza compared with workers in the control group (2.75% versus 3.18%; hazard ratio 0.80, 95% CI 0.66 to 0.97). However, those who stayed at home with their infected family members were 2.17 times more likely to be infected. We found no RCTs on eye protection, gowns and gloves, or screening at entry ports. AUTHORS' CONCLUSIONS: The high risk of bias in the trials, variation in outcome measurement, and relatively low compliance with the interventions during the studies hamper drawing firm conclusions and generalising the findings to the current COVID-19 pandemic. There is uncertainty about the effects of face masks. The low-moderate certainty of the evidence means our confidence in the effect estimate is limited, and that the true effect may be different from the observed estimate of the effect. The pooled results of randomised trials did not show a clear reduction in respiratory viral infection with the use of medical/surgical masks during seasonal influenza. There were no clear differences between the use of medical/surgical masks compared with N95/P2 respirators in healthcare workers when used in routine care to reduce respiratory viral infection. Hand hygiene is likely to modestly reduce the burden of respiratory illness. Harms associated with physical interventions were under-investigated. There is a need for large, well-designed RCTs addressing the effectiveness of many of these interventions in multiple settings and populations, especially in those most at risk of ARIs.


Subject(s)
Hand Hygiene , Masks , Respiratory Tract Infections/prevention & control , Virus Diseases/prevention & control , Virus Shedding , Bias , COVID-19/epidemiology , COVID-19/prevention & control , Case-Control Studies , Epidemics , Humans , Influenza A Virus, H1N1 Subtype , Influenza, Human/epidemiology , Influenza, Human/transmission , Influenza, Human/virology , Randomized Controlled Trials as Topic/statistics & numerical data , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/transmission , Respiratory Tract Infections/virology , SARS-CoV-2 , Severe Acute Respiratory Syndrome/epidemiology , Severe Acute Respiratory Syndrome/prevention & control , Virus Diseases/epidemiology , Virus Diseases/transmission
SELECTION OF CITATIONS
SEARCH DETAIL